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ABSTRACT

The problem of separating variations due to natural and anthropogenic forcing from those due to unforced

internal dynamics during the twentieth century is addressed using state-of-the-art climate simulations and

observations. An unforced internal component that varies on multidecadal time scales is identified by a new

statistical method that maximizes integral time scale. This component, called the internal multidecadal

pattern (IMP), is stochastic and hence does not contribute to trends on long time scales; however, it can

contribute significantly to short-term trends. Observational estimates indicate that the trend in the spatially

averaged ‘‘well observed’’ sea surface temperature (SST) due to the forced component has an approximately

constant value of 0.1 K decade21, while the IMP can contribute about 60.08 K decade21 for a 30-yr trend.

The warming and cooling of the IMP matches that of the Atlantic multidecadal oscillation and is of sufficient

amplitude to explain the acceleration in warming during 1977–2008 as compared to 1946–77, despite the

forced component increasing at the same rate during these two periods. The amplitude and time scale of the

IMP are such that its contribution to the trend dominates that of the forced component on time scales shorter

than 16 yr, implying that the lack of warming trend during the past 10 yr is not statistically significant. Fur-

thermore, since the IMP varies naturally on multidecadal time scales, it is potentially predictable on decadal

time scales, providing a scientific rationale for decadal predictions. While the IMP can contribute significantly

to trends for periods of 30 yr or shorter, it cannot account for the 0.88C warming that has been observed in the

twentieth-century spatially averaged SST.

1. Introduction

It is well established that the global mean surface

temperature has risen by more than 0.78C over the last

100 yr (Trenberth et al. 2007). Since global warming has

been linked to rising sea levels (Bindoff et al. 2007),

glacier melting (Lemke et al. 2007), Arctic sea ice re-

treat (Lemke et al. 2007), increasing tropical cyclone

intensity (Knutson et al. 2010), and diminished snow

cover (Lemke et al. 2007), the cause of this warming is of

obvious concern. Many studies conclude that human

activities are primarily responsible for this warming

(Hegerl et al. 2007). However, the observed warming does

not occur uniformly in time. For instance, the rate of global

warming during 1901–2005 is about 0.0758C decade21,

whereas the rate during 1981–2005 is about 0.238C decade21

(Trenberth et al. 2007). Also, observations indicate little

to no warming during 1950–70 and 1998–2007, despite

increasing greenhouse gas concentrations (Trenberth

et al. 2007).

While the reality of human-induced global warming is

beyond doubt, a question of intense interest is whether

the recent acceleration in warming and the midcentury

cooling are due to internal variability or changes in nat-

ural and anthropogenic forcing (including volcanic and

solar forcing). By internal variability we mean variability
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that occurs in the absence of natural or anthropogenic

forcing; that is, variability that occurs solely due to the

internal dynamics of the coupled atmosphere–ocean–

biosphere–cryosphere system. The purpose of this paper

is to quantify the degree to which observed multidecadal

fluctuations of spatially averaged sea surface temperature

during the past century can be separated into distinct

internal and forced components. While this topic has

been the focus of numerous studies (Zwiers and Zhang

2003; Huntingford et al. 2006; Stone et al. 2007; Hegerl

et al. 2007), the present work explicitly identifies a sig-

nificant unforced multidecadal component and separates

this component from forced components using optimal

spatial filtering techniques.

Detection of climate change and its attribution to

external forcings requires first defining the space–time

structure of the expected response of the climate system

to external forcing. These forced response patterns

typically are obtained from coupled atmosphere–ocean

general circulation models. Because realistic climate

models generate their own internal variability, identifi-

cation of the forced response pattern from model sim-

ulations involves yet another signal detection problem.

A typical approach is to estimate the response pattern by

averaging over space, time, ensembles, or by calculating

leading principal components (PCs) of forced simula-

tions. However, none of these approaches optimizes de-

tectability. In this paper, discriminant analysis is used to

construct a forced response pattern that maximizes the

ratio of forced variance to internal variability. A forced

pattern estimated this way optimizes detection in the

forced climate models and hence is likely to be detectable

in observations.

Another step in detection and attribution analysis is

the determination of the statistical properties of internal

variability. Much of the debate on global warming cen-

ters on uncertainties in the structure and magnitude of the

internal variability of the real climate system. In practice,

these statistical properties are estimated from climate

simulations without natural or anthropogenic forcing,

called control runs. After defining the forced response

pattern and the statistical characteristics of internal var-

iability, both to within unknown coefficients, generalized

multivariate linear regression is then used to estimate the

coefficients so as to best fit the observed record. A forced

response is detected when the change in coefficient is

unlikely to have occurred because of natural variability,

and is attributed when the change is consistent with the

climate model predictions for that response and is in-

consistent with the predicted response to other plausible

forcings (Hasselmann 1979, 1997; Allen and Tett 1999).

In this paper, we expand the standard detection and

attribution framework by including a pattern of internal

variability among the forced response patterns being in-

vestigated. This approach allows a more complete di-

agnosis of the role of unforced components in observed

variability. The value of this approach depends on how

well the internal pattern explains the variability in ques-

tion. Estimation of the amplitude of internal variability

proceeds in the same fashion as in standard detection

analysis. Moreover, the ability to distinguish between

forced and internal variability depends on the extent to

which these patterns differ. However, detection and

attribution are not relevant concepts for components

that arise from internal variability. Instead, the concepts

of skill and fidelity become relevant for internal com-

ponents: skill measures the degree to which predictions

of a component match observations of the component

and fidelity measures the degree to which the observed

statistical properties of a component match those pre-

dicted by climate models. Methods for estimating skill

and fidelity are discussed in Jolliffe and Stephenson

(2003) and DelSole and Shukla (2010).

2. Identification of internal multidecadal patterns

We are interested in diagnosing internal variability on

decadal-to-multidecadal time scales. Unfortunately, stan-

dard statistical procedures, such as principal component

analysis, do not decompose variables specifically by time

scale. Empirical mode decomposition (Huang and Wu

2008) and singular spectrum analysis (Ghil et al. 2002)

ignore spatial correlations and hence are not optimal.

Multichannel singular spectrum analysis and extended em-

pirical orthogonal functions (Ghil et al. 2002) are often

used to decompose time series by time scale, but they

are not specifically optimized for this purpose. Here we

employ a novel statistical method that decomposes vari-

ables by time scale, where time scale is measured by av-

erage predictability time (APT). APT is a measure of

predictability that can be interpreted as a multivariate

generalization of the integral time scale, T2,

T
2

5 1 1 2 �
‘

t51
r2

t , (1)

where rt is the autocorrelation function of the process

and t is time lag (DelSole and Tippett 2009a). DelSole

and Tippett (2009b; see their appendix C) show that any

multivariate time series can be decomposed into an un-

correlated set of components ordered such that the first

maximizes APT, the second maximizes APT subject to

being uncorrelated with the first, and so on.

Unfortunately, multidecadal variability tends to be

model dependent (Latif et al. 2006). To reduce this

model dependence, we adopt a multimodel approach in
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which APT is optimized over multiple models. A poten-

tial problem with this approach is that the leading com-

ponent may arise from a single dominant model or subset

of models. To confirm that the leading APT component

genuinely reflects a property of the entire multimodel

ensemble, we verify that the component is predictable

on decadal time scales in each model separately.

We examine control runs that were assessed in the

Intergovernmental Panel on Climate Change (IPCC)

Fourth Assessment Report [also known as Coupled

Model Intercomparison Project phase 3 (CMIP3)]. Only

runs that are at least 300 yr long and have consistent

variances are considered (see the second section of the

appendix for details). Using only control runs ensures

that the obtained patterns are due to internal variability

and not to natural or anthropogenic forcing. The com-

ponent with maximum APT in these control runs is

shown in the top panel of Fig. 1. To facilitate comparison

with observations, APT is optimized only using ‘‘well

observed’’ ocean model points, where the term well

observed depends on the sampling characteristics of an

observational dataset (see the first section of the ap-

pendix for details). The pattern is predominantly of

single sign and concentrated in the North Atlantic and

North Pacific. The centered time series in three rep-

resentative control runs, shown in the bottom panel of

Fig. 1, confirm that the component fluctuates significantly

on multidecadal time scales. The APT for this component

is 5.2 yr. Note that APT quantifies predictability time

scale but not oscillatory time scale. Loosely speaking,

oscillatory time scale depends on the location of a spec-

tral peak, while APT depends on the width of a spectral

peak (DelSole and Tippett 2009a). Statistical signifi-

cance of APT is assessed relative to the null hypothesis

that the time series is white noise when sampled every

2 yr. The motivation for this hypothesis and the method

for estimating the corresponding sampling distribution

are discussed in the third section of the appendix. The

APT of this component is found to be statistically signif-

icant in each model individually. We refer to this com-

ponent as the internal multidecadal pattern (IMP).

The space–time structure of the IMP is suggestive of

the multidecadal variability identified in previous stud-

ies (Bjerknes 1964; Schlesinger and Ramankutty 1994;

Kushnir 1994; Delworth and Mann 2000). Consistent

with some of these studies, the IMP identified here has

no significant correlation with concurrent atmospheric

surface winds, surface pressure, or precipitation at any

grid cell. The lack of correlation between major atmo-

spheric coupling variables, and the concentration of

amplitude in regions associated with deep-water for-

mation, suggests that the multidecadal variations in

the IMP arise from internal ocean dynamics, either as a

self-sustained phenomenon or driven stochastically by

the atmosphere.

Although the IMP has amplitude in two oceanic ba-

sins, the optimization procedure does not distinguish

between cause and response, hence we cannot exclude

the possibility that decadal variability arises in one basin

and that the signal in other basins emerges as a response.

A related concern is that optimizing multimodel APT

may result in a component that is a mixture of distinct

phenomena in different models. For instance, one could

imagine the Atlantic and Pacific structure of the IMP as

resulting from some of the models having predictability

in the Atlantic and others in the Pacific, but with none

having related predictability in both. Finally, the signal

in both basins might be a statistical artifact caused by

representing variability with an incomplete set of EOFs.

To gain insight into these questions, we optimized APT

only in the Atlantic basin and then calculated regression

coefficients between the component and the SST at in-

dividual grid points. We found that optimizing APT only

in the Atlantic yielded nearly the same structure in the

Atlantic as seen in Fig. 1. Moreover, outside the At-

lantic, the regression map captured a similar positive

relation in the North Pacific. Large-scale positive re-

gression coefficients can be found in the Pacific, to

varying degrees, in about half the models individually.

We also optimized APT only in the Pacific and obtained

a pattern of the same sign globally, with positive re-

gression coefficients in the Atlantic in about half the

models individually. These calculations show that the

Atlantic and Pacific signals are genuine covarying

structures and not statistical artifacts of the technique.

3. Identification of the forced response

To specify the response to climate forcing, we seek

a pattern that describes the change in spatial structure

due to natural and anthropogenic forcing, but also filters

out as much internal variability as possible. To do this,

we determine the pattern that maximizes the ratio of

variance in the forced run to variance in the control run

(details given in the fourth section of the appendix). The

mathematical technique for doing this is called discrimi-

nant analysis and has been used previously to quantify

seasonal predictability (Straus et al. 2003), decadal pre-

dictability (Venzke et al. 1999), and climate change (Ting

et al. 2009; Schneider and Held 2001). Our application

differs from Ting et al. (2009) in that we use the method to

discriminate between forced and control runs, with no

ensemble averaging, whereas Ting et al. (2009) use only

forced runs to discriminate between ensemble means and

their deviations. To the extent that the forced response is

additive and independent of internal variability, the two
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methods should give identical results. In practice, the two

methods may give different results. Our approach takes

advantage of the much larger sample sizes afforded by the

control runs.

In contrast to many attribution studies, no time lag in-

formation is used to describe the response to external

forcing—the discriminant analysis is based only on spatial

structure.

The pattern that maximizes the ratio of variances

between forced and control runs is shown in Fig. 2.

Variance in each control run is measured with respect to

the 300-yr mean of the control run, while variance in

each forced run is measured with respect to the 1901–50

mean of the forced run. The discriminant pattern in Fig. 2

is similar to that obtained in Ting et al. (2009), indicating

that sampling errors are not significant. We call this pat-

tern the forced-to-unforced discriminant. In contrast to

the IMP (Fig. 1), the discriminant pattern has positive

anomalies in the tropics and weak or negative anomalies

in the extratropics. These differences provide the basis for

separating forced and internal variability.

Discriminant analysis produces an ordered set of pat-

terns, such that the first maximizes the ratio of forced-

to-unforced variance, the second maximizes this ratio

subject to being uncorrelated with the first, and so on. The

question arises as to whether some secondary patterns

should be included to capture more fully the response to

climate forcing. Figure 3 shows the variance ratios for all

discriminant patterns and reveals that only the first is

clearly separated from the others. The figure also shows

FIG. 1. Component that maximizes the average predictability time of SST in 14 climate

models run with fixed forcing (i.e., ‘‘control runs’’). (top) Spatial structure of the component,

which is called the IMP. Ocean points with no shading indicate regions that were omitted from

the maximization (i.e., ‘‘masked out’’) because of insufficient data in the corresponding ob-

servational dataset. (bottom) Time series of this component in three representative control

runs: ukmo_hadcm3 (‘‘UKMO’’), ncar_ccsm3_0 (‘‘NCAR’’), and gfdl_cm2_1 (‘‘GFDL’’).
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the upper and lower fifth percentiles of the variance ratios

determined from 1000 bootstrap samples of the control

simulations, using a block length of 80 yr (a large block

length was chosen to capture autocorrelations and trends).

The fact that only the first ratio lies well outside the

bootstrap confidence interval implies that the other ra-

tios are consistent with the hypothesis of no forced re-

sponse. Presumably, only one forced pattern emerges

because the spatial response to different climate forcings

(e.g., fossil fuel burning, volcanic eruptions, and solar

variability) tends to project on similar surface patterns.

Consistent with this, most attribution studies distinguish

different forcings by including—in addition to horizon-

tal spatial information—temporal information, vertical

structure, or seasonality in the response pattern (Hegerl

et al. 2007). While ignoring temporal information limits

our ability to distinguish different forcings, it also cre-

ates opportunities for performing detection and attri-

bution on finer temporal scales. In particular, signals

with both space and time information can be monitored

only if the data are at least as long as the time interval

used to define the signal. In contrast, signals with only

spatial information allow one to apply detection and at-

tribution each year at a time, to monitor the signals in real

time, and to detect abrupt changes in real time.

4. Results of fingerprinting

We now fit the well-observed annual average SST

at each year to a linear combination of the forced-

to-unforced discriminant and the IMP. Amplitudes are

chosen to approximate observations as closely as pos-

sible, where ‘‘close’’ is defined by a generalized distance

measure that accounts for correlations in space. This

procedure is equivalent to fingerprinting (Hasselmann

1979, 1997; Allen and Tett 1999; Hegerl et al. 2007) and

is discussed in the fifth section of the appendix. In con-

trast to previous studies that have used fingerprinting to

distinguish between different forcings (e.g., anthropo-

genic and natural), fingerprinting is used here to distin-

guish between forced and internal variability, and this

discrimination is based solely on spatial structure (i.e.,

no temporal information is included in the response

pattern). The value of including an unforced component

among the forced components lies in the fact that the

IMP is 1) the most predictable structure on decadal time

scales in state-of-the-art climate models and 2) of single

FIG. 2. Pattern of the expected response to climate forcing, obtained by maximizing the ratio of

variances between the forced and control simulations.

FIG. 3. Optimized ratio of forced variance to unforced variance,

as determined by discriminant analysis of the leading 30 multi-

model EOFs. The shaded region shows the upper and lower fifth

percentiles of the bootstrap estimates drawn from the unforced

runs.
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sign and hence projects strongly on the global average.

For brevity, we refer to the amplitude of the IMP

projected onto the well-observed SST as the ‘‘observed

IMP.’’

The amplitude of the forced component, expressed as

a 95% confidence interval, is indicated by shading in the

top panel of Fig. 4. The confidence interval accounts for

uncertainty due to finite sample size and missing ob-

servations (see the sixth section of the appendix for

details). The amplitude of the forced component is

dominated by a secular trend, but it also decreases

briefly after certain major volcanic eruptions. These

decreases are consistent with the fact that explosive

volcanic eruptions increase sulfate aerosols in the

stratosphere, which in turn lead to temporary global

cooling (Forster et al. 2007). These evolutionary fea-

tures support the claim that this component captures the

response to both anthropogenic and natural forcing.

FIG. 4. Generalized least squares estimates of (top) the amplitude of the forced component

and (bottom) the IMP when the forced component is determined from the forced-to-unforced

discriminant. Shading indicates twice the (top) standard error and (bottom) standard error of

the estimates as estimated from standard regression theory plus a contribution due to missing

data. Blue curve in the top panel indicates the ensemble mean time series of the forced-

to-unforced discriminant in the forced runs. Blue dashed lines in the top panel indicate years of

the five most significant volcanic eruptions after 1850, in terms of the change in visible optimal

depth as estimated by Sato et al. (1993), specifically, Krakatoa in 1883, Santa Maria in 1902,

Mt. Agung in 1961, El Chichon in 1982, and Mt. Pinatubo in 1991. Red curve in the bottom

panel shows the annual average AMO index after rescaling.

914 J O U R N A L O F C L I M A T E VOLUME 24



The expected amplitude of the forced pattern is es-

timated by averaging the amplitude of the forced-

to-unforced discriminant across the forced runs. The

resulting amplitude, shown as the blue line in the top

panel of Fig. 4, is smoother than the observed counterpart

because fluctuations arising from internal variability are

filtered out by averaging over many forced runs. The

question arises as to whether the observed and predicted

amplitudes agree with each other, as required for a formal

attribution analysis. On a year-by-year basis, an attribution

analysis is equivalent to checking that the predicted am-

plitude occurs within the 95% confidence interval of the

observed amplitude—that is, checking that the blue curve

in Fig. 4 lies within the shaded region. This condition is

satisfied for most years (by definition, observations are

expected to fall outside the shaded region approximately

5% of the time). In contrast, detection—that is, deter-

mining that the observed amplitude is significantly differ-

ent from zero—is equivalent to checking that the 95%

confidence interval for the observed amplitude does not

contain zero—that is, checking that the shaded region does

not intersect the zero line. This condition is satisfied for

every year after 1968. Thus, we conclude that the warming

that has been observed since the 1970s is very unlikely to

have occurred because of internal variability and is con-

sistent with the warming because of anthropogenic and

natural forcing predicted by models, which is consistent

with the major conclusions of the IPCC (Hegerl et al.

2007). Note that our methodology has allowed us to draw

this conclusion without taking multiyear averages, as

typically performed in detection and attribution anal-

yses (e.g., Huntingford et al. 2006; Zwiers and Zhang

2003; Stone et al. 2007).

The amplitude of the IMP, expressed as a 68% con-

fidence interval, is indicated by shading in the bottom

panel of Fig. 4. A smaller confidence interval is used

because we are comparing amplitudes to each other, not

to a specific value (e.g., an approximate 5% significance

test for a difference in random variables would involve

checking that the difference exceeds twice the standard

deviation, or equivalently that one standard deviation

‘‘error bars’’ for the two values do not overlap). A striking

aspect of this time series is the multidecadal oscillations in

the last 100 yr. The negative anomalies during 1900–20

and 1970–90, and the positive anomalies during 1930–60,

closely follow the multidecadal variability identified in

the Atlantic Ocean by previous studies (Schlesinger and

Ramankutty 1994; Kushnir 1994). Also, the observed

IMP is strongly correlated with the annual average

Atlantic multidecadal oscillation (AMO) index, shown

as the red curve in the bottom panel of Fig. 4. These

results suggest that the AMO represents variability

that is dominated by internal dynamics, as suggested in

previous studies (Knight et al. 2005; Zhang et al. 2007;

Ting et al. 2009).

Since neither the control nor the forced runs used

initial states based on observations, the random nature

of internal variability means that we do not expect an

internal component in the model to predict the time

evolution of the component in observations—that is, we

do not expect predictions of an internal component by

these models to have skill. Consequently, comparison

between model and observations is confined to verifying

fidelity—that is, to verifying that the statistical charac-

teristics of the component are consistent between ob-

servations and models. Two measures of fidelity are time

scale and variance. To quantify time scale, we use a sample

estimate of the integral time scale (1) (see the third section

of the appendix for further details). For the observed IMP

time series, we find T2 5 5.7 yr. By comparison, the mean

and standard deviation of T2 across all forced runs are 6.6

and 3.7 yr, respectively. Thus, the time scale of the ob-

served IMP is within the range of time scales predicted by

models. Similarly, the variance of the observed IMP is 1.65,

while the mean and standard deviation of the IMP vari-

ance across all forced runs are 1 and 0.75, respectively.

Thus, the variance of the observed IMP is consistent with

the range of variances predicted by models.

The squared autocorrelation function of the IMP in

each control run is shown in Fig. 5. Also shown is the 5%

significance level of the autocorrelation based on a sam-

ple size of 300. The significance level does not account for

the selection bias because of choosing the component that

maximizes APT; however, this bias is small owing to the

FIG. 5. Squared autocorrelation function of the IMP in each

model control run as a function of time lag. The 5% significance

level of the autocorrelation, for a sample size of 300, is indicated by

the thick horizontal dashed line.
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large sample size of the multimodel dataset (over 4200

samples) and as confirmed by splitting the data in half

and comparing the autocorrelations to those calculated

from independent control runs. The e-folding times have

a mean of 7.7 yr and a standard deviation of 3.5 yr; how-

ever, several models have significant autocorrelations after

10 yr, implying that the IMP in these models can be

predicted by at least a linear model on decadal time

scales. These results provide a scientific rationale for

decadal prediction.

5. Forcing of internal multidecadal variability

Two major questions arise at this point: 1) does fin-

gerprinting truly separate forced and unforced variability

in observations and 2) does natural and anthropogenic

forcing of the twentieth century influence the evolution of

the IMP? Both questions can be answered by checking

for the existence of a common signal in the IMP time

series of the forced runs. To detect this signal, we test

whether the ensemble mean IMP varies in time. For

consistency, the IMP in the forced runs is calculated the

same way as the observed IMP, including using the same

forced-to-unforced discriminant. The mean and 95%

confidence intervals for the IMP are shown in Fig. 6 (see

the seventh section of the appendix for calculation de-

tails). About one-fifth of the confidence intervals fail to

bracket zero, whereas only one-twentieth should fail to

bracket zero if there were no signal. Thus, we cannot

conclude that the forcing does not influence the IMP.

Nevertheless, there are three points to recognize about

this conclusion. First, the ensemble mean IMP has

a standard deviation of 0.24, whereas the observed IMP

has a standard deviation of 1.65. Thus, to the extent

forcing influences the IMP, this influence explains only

about one-seventh of the observed variability in IMP.

Second, the ensemble mean IMP generally decreases

between 1980 and 2000, whereas the observed IMP gen-

erally increases during this period. Also, the ensemble

mean IMP has virtually no trend between 1950 and 1970,

whereas the observed IMP generally decreases during

this period. Thus, even if the forcing influenced the IMP,

this influence cannot account for the general increase in

the observed IMP during 1980–2000 and the general de-

crease between 1950 and 1970. Finally, the ensemble

mean IMP is autocorrelated, hence it is not appropriate to

apply the significance test for the mean to each year in-

dependently. An effective time scale estimated by fitting

the ensemble mean IMP to a first-order autoregressive

(AR) model is 7.7 yr (see the seventh section of the ap-

pendix for details of this estimate). To the extent that this

time scale reduces the degrees of freedom by a factor of

7.7, the error bars in Fig. 6 would more than double, in

which case the ensemble mean IMP in the forced runs

would be indistinguishable from zero.

6. Analysis of spatially averaged SST

We now investigate the role of forced and internal

variability in the spatially averaged SST. To do this, we

consider three annual average SST datasets: 1) the ob-

served SST, 2) the SST as reconstructed from the IMP and

the forced component, and 3) the SST as reconstructed

from the forced component only. The latter two datasets

are sampled consistently with the missing data distribution

of the first. The area-weighted spatial average of each SST

dataset is shown as colored dots in Fig. 7.

First note an apparent discontinuity at 1945. This dis-

continuity has been noted previously and compellingly

FIG. 6. Ensemble mean time series of the IMP in the forced runs.

Ensemble mean is an average over all forced runs used to calculate

the forced-to-unforced discriminant pattern. Error bars show the

95% confidence interval for the ensemble mean. Red dashed line

indicates zero amplitude.

FIG. 7. Spatially averaged SST on the ‘‘well-observed grid’’ for

observations (green dots), as reconstructed by the sum of the

forced component and IMP (black dots), and as reconstructed by

the forced component only (red dots). Amplitudes are relative to

the 1901–50 mean amplitude. Best-fit linear trends for the periods

1946–77, 1977–2008, and 1946–2008 are shown as solid lines, with

the trend for the last period offset by 20.4 K for clarity. Actual

trend values are given in Table 1.
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attributed to uncorrected instrumental biases during the

early 1940s (Barnett 1984; Thompson et al. 2008). Con-

sequently, we exclude the early 1940s data from our

analysis. Dividing the post-1945 era into two equal pe-

riods yields the two 32-yr periods 1946–77 and 1977–2008.

The trends during these 32-yr periods for the three

datasets are shown as solid lines in Fig. 7 and tabulated in

Table 1; the trend for the whole 63-yr period 1946–2008 is

also shown, but it is offset by 0.4 K for clarity; 95%

confidence intervals are also include in the table.

Second, the trend for the observed SST and for the re-

construction based on IMP plus forced component are

statistically indistinguishable (i.e., their confidence inter-

vals overlap). This agreement demonstrates that the two

components capture the dominant multidecadal fluctua-

tions in the observed spatially average SST.

Third, the trend for the observed SST is larger in the

1977–2008 period than in the 1946–77 period, indicating

‘‘accelerated warming.’’ The change in trend is signifi-

cant under the assumption that the variability that re-

mains after removing the trend is not autocorrelated. In

reality, the residual variability is autocorrelated because

of the IMP and nonlinear temporal forcing, raising the

possibility that the two trends might not be distinguish-

able when autocorrelations in the residuals are taken into

account. In fact, this difference can be explained by the

IMP. Specifically, the trend due to only the forced com-

ponent (i.e., the red line) is statistically the same in the

two 32-yr periods and in the 63-yr period; that is, the

forced part is not accelerating. Taken together, these re-

sults imply that the observed trend differs between the

periods 1946–77 and 1977–2008, not because the forced

response accelerated, but because internal variability

leads to relative cooling in the earlier period and relative

warming in the later period.

The contribution to trends due to the IMP can be

understood from a more general framework. Since the

IMP is stochastic, it can contribute only random trends.

The distribution of these trends can be derived analyti-

cally from the statistics of the stochastic process (see the

distribution of trends for a stochastic process in the ap-

pendix for details). If the IMP is fitted to a first-order

autoregressive model based on its 1-yr lag autocorrela-

tion of 0.806, then the 95% confidence interval for the

IMP varies with trend period length as shown in Fig. 8.

Note that the confidence interval increases rapidly with

decreasing trend period length. For reference, the con-

fidence interval is 60.169 K decade21 for 16-yr trends,

60.0776 K decade21 for 32-yr trends, and 60.031 for

64-yr trends. By comparison, the trend for the forced

pattern is about 0.1 K decade21, which is close to the

confidence interval for the IMP trend for 25-yr periods.

On 10-yr time scales, variability in trend due to the IMP

is relatively large (e.g., 60.265 K decade21) and can

easily overwhelm the trend due to the forced compo-

nent, although variability due to interannual variabil-

ity, such as El Niño, also becomes important on this

time scale. This framework provides a consistent and

plausible explanation for why trends vary so strongly

on 10-yr time scales and indicates that the lack of

warming trend during the past 11 yr (1998–2008) is not

sufficient to conclude that the long-term rate of warming

has changed.

Consistent with the above results, all three datasets

shown in Fig. 7 have statistically indistinguishable trends for

the 63-yr period 1946–2008, indicating that internal vari-

ability can be filtered out by fitting trends over 60 or more

years. Thus, in addition to optimizing forced-to-unforced

variance, the forced response can be estimated from the

d pattern of linear trends in the observations between

1850 and 2005,

TABLE 1. Trends in annual mean, spatially averaged SST for

different reconstructions and periods. ‘‘Total observations’’ refers

to well-observed HadSST2, ‘‘forced 1 IMP’’ refers to best-fit SST

using forced component plus IMP, and ‘‘forced only’’ refers to best-

fit SST using the forced component only. Trends are expressed in

K decade21 plus/minus the 95% confidence interval.

Period Dataset Trend (K decade21)

1946–77 Total observations 0.0378 6 0.0372

1946–77 Forced 1 IMP 0.0486 6 0.0291

1946–77 Forced only 0.112 6 0.0355

1977–2008 Total observations 0.145 6 0.029

1977–2008 Forced 1 IMP 0.166 6 0.0319

1977–2008 Forced only 0.122 6 0.0314

1946–2008 Total observations 0.0909 6 0.0137

1946–2008 Forced 1 IMP 0.096 6 0.0133

1946–2008 Forced only 0.103 6 0.012

FIG. 8. Estimated 95% confidence interval for the trend due to

the IMP as a function of trend period length. Estimate is based on

a first-order AR model fit to the IMP with AR parameter 0.806.

Horizontal dashed line indicates the estimated trend due to an-

thropogenic and natural forcing.
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d pattern of linear trends in the forced runs between

1850 and 2000,
d leading EOF of the ensemble mean forced runs be-

tween 1850 and 2000, and
d leading signal-to-noise discriminant of the forced runs

between 1850 and 2000.

The last pattern, proposed by Ting et al. (2009), maxi-

mizes the ratio of the variance of ensemble means to the

variance of the their deviations. All four patterns are

shown in Fig. 9. The patterns generally agree on a cool-

ing pattern in the North Atlantic, warming in the tropics,

and little to no warming in the central North Pacific.

The result of fitting the observed SST to each of these

patterns in turn, simultaneously including the IMP, is

shown in Fig. 10. We see that the different time series

differ only in minor ways on short time scales; that is,

the time series and confidence intervals are not sensi-

tive to the method by which the forced pattern has been

estimated. This result shows that using discriminant anal-

ysis to identify forced patterns does not enhance de-

tectability, contrary to expectation. However, the use of

spatial optimization techniques may become more critical

for smaller geographic domains or for smaller sample

sizes. Note also that the trend pattern from observations

does not involve a dynamical model and hence is not

affected by uncertainties in climate forcing.

It should be emphasized that while the IMP can con-

tribute significantly to trends on time scales of around

30 yr or shorter, it cannot account for the century-long

0.88C warming trend observed in the spatially averaged

sea surface temperature.
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APPENDIX

Calculation Details

a. Datasets

The observational dataset used in this study is the Met

Office Hadley Centre Sea Surface Temperature, version

FIG. 9. Four alternative estimates of the forced pattern. Different methods are indicated in the title of each panel.
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FIG. 10. Time series for the forced pattern and IMP for the four different estimates of the forced pattern shown in Fig. 9. The respective

forced pattern is indicated in the title of each panel, and corresponding IMP is indicated in the panel directly below the time series for the

forced pattern.
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2 (HadSST2; available online at http://badc.nerc.ac.

uk/data/hadsst2/) dataset. This dataset is an estimate

of SST from 1850 to the present, averaged on a

monthly basis on a 58 3 58 grid. Grid cells with insuf-

ficient data are assigned ‘‘missing values.’’ See Rayner

et al. (2006) for further details of this dataset.

The model simulations analyzed in this study are the

World Climate Research Programme (WCRP) CMIP3

multimodel dataset. These simulations were assessed

in the Fourth Assessment Report of the IPCC. The

two scenarios analyzed are 1) radiative forcing char-

acteristic of preindustrial times, called ‘‘control runs’’ or

‘‘unforced runs’’ (officially designated as ‘‘PICNTRL’’)

and 2) anthropogenic and natural forcing characteristic

of the twentieth century, called ‘‘forced runs’’ [officially

designated as Twentieth-Century Climate in Coupled

Model (‘‘20c3m’’)]. The specific models used in this

study are listed in Table 2. Some models did not in-

clude solar and volcanic forcing in the forced runs, as

indicated in Table 2, so a multimodel average of the

forced runs probably underestimates the response to

natural forcing. The consistency of the final results

with observations suggests that this underestimation is

not serious.

The output of each simulation was interpolated onto

the 58 3 58 grid of the HadSST2 dataset to facilitate

comparisons on a common grid. The time series at each-

ocean grid cell in each dataset was averaged from January

to December of each year to obtain 12-month averages.

For the HadSST2 dataset, only years having 10 or more

months of nonmissing values were averaged; otherwise,

the grid cell was assigned a missing value for that year.

To facilitate comparison with observations, we in-

clude a grid cell in the analysis only if 85% of the years

between 1950 and 2005 were available in the HadSST2

dataset; otherwise, the grid cell was omitted from analy-

sis. This ‘‘masking’’ procedure yielded a map containing

688 ocean points. All model simulations were masked in

this way for consistency.

The AMO index used in Fig. 4 was downloaded (from

http://www.cdc.noaa.gov/data/timeseries/AMO/). The

AMO is defined as the detrended, area-weighted-average

SST over the North Atlantic from 08 to 708N. The index

was annually averaged and scaled to fit in the figure.

b. Multimodel EOFs

Statistical optimization methods produce biased es-

timates because of overfitting when the number of

TABLE 2. The number of ensemble members (‘‘Sims’’), indicator of whether the model contained natural forcing (‘‘NAT’’; ‘‘Y’’ if yes,

‘‘—’’ if not), integral time scale T2 (in years), and variance of the IMP estimated from each model of the forced runs (first 23 rows) and

observations (last row). For consistency, all statistics are computed using only the last 100 yr of the available time series. The first 14 rows

specify the models used to optimize for the forced and internal patterns. For model-forced runs with more than one ensemble member, the

mean value and standard deviation of T2 and variance are indicated in the table.

Model NAT Sims

T2

(years) Variance

1 cccma_cgcm3_1 — 5 7 6 2 0.44 6 0.14

2 cccma_cgcm3_1_t63 — 1 5.6 0.88

3 cnrm_cm3 — 1 6.8 0.94

4 csiro_mk3_0 — 3 7 6 1.6 3.09 6 1.1

5 csiro_mk3_5 — 1 6.3 0.82

6 gfdl_cm2_0 Y 3 5.2 6 2.2 1.17 6 0.37

7 gfdl_cm2_1 Y 5 5.9 6 1.2 1.39 6 0.44

8 inmcm3_0 — 1 5 0.8

9 ipsl_cm4 — 1 5.3 0.99

10 miroc3_2_medres Y 3 8.5 6 0.55 0.43 6 0.00

11 miub_echo_g Y 3 4.5 6 2 1.31 6 0.87

12 mri_cgcm2_3_2a Y 5 6.6 6 3.7 0.51 6 0.1

13 ncar_ccsm3_0 Y 2 11.2 6 6.8 1.57 6 0.49

14 ukmo_hadcm3 — 2 7.7 6 2.4 0.82 6 0.00

15 bccr_bcm2_0 — 1 9.7 0.81

16 giss_aom — 2 3.5 6 0.32 0.64 6 0.1

17 giss_model_e_h Y 5 6.6 6 2 1.7 6 1.2

18 giss_model_e_r Y 9 7.9 6 7.9 0.73 6 0.2

19 ingv_echam4 — 1 3.1 0.31

20 miroc3_2_hires — 1 6 0.5

21 mpi_echam5 — 3 7.8 6 2.4 0.67 6 0.14

22 ncar_pcm1 Y 3 6.3 6 0.55 0.95 6 0.26

23 ukmo_hadgem1 Y 2 3.5 6 0.45 0.8 6 0.1

24 hadsst2 1 6.3 1.65
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estimated parameters is not a small fraction of the total

sample size. To reduce the number of estimated pa-

rameters, we project variables onto the leading PCs of

the ensemble of control runs. Accordingly, we collected

all control runs with at least 300 yr of simulation, which

totaled 17 models. To avoid biasing the results toward

models with longer runs or multiple ensemble members,

we use only the last 300 yr of the single longest control

run of each climate model simulation. The 300-yr mean

of each simulation is then subtracted from each grid point

of the corresponding control run to produce anomalies of

annual mean fields. For reasons explained below, the

Institute of Atmospheric Physics (IAP) model, Goddard

Institute for Space Studies Atmosphere Model E-H

(GISS-EH), and GISS Model E-R (GISS-ER) were re-

moved from analysis. This procedure yielded 300-yr

anomaly time series from 14 separate climate models,

giving a total of 4200 yr of simulation. The specific

models used in our analysis are the first 14 models listed

in Table 2.

The complete set of control runs obtained from the

above procedure yields a 688 3 4200 data matrix. The

principal components were computed by multiplying

the anomaly at each grid point by the square root of

the cosine of latitude, computing the singular value de-

composition (SVD) of the resulting data matrix, and

then inverting the cosine weighting in the spatial fields.

The cosine weighting ensures that the SVD maximizes

the area-weighted variance.

After computing the multimodel PC, the variance of

a given PC was computed separately for each model. A

standard chi-square test with 299 (5300 2 1) degrees of

freedom indicates that the 95% confidence interval for

each variance is about 18% of the variance. This interval

underestimates the true interval since the time series are

autocorrelated; nevertheless, it provides a useful bench-

mark. When all 17 control simulations of length 300 yr

are included, the IAP model was found to have several

times more variance than any other model in each of the

first five PCs, suggesting that this model has significantly

different space–time variability than other models and

hence should not be pooled with the others. Accordingly,

the IAP model was dropped from the analysis and the

PCs recomputed. The newly computed PCs revealed that

GISS-EH had more than twice as much variance and that

GISS-ER had less than half as much variance as any other

models. Eliminating these two models and recomputing

the PCs revealed that the Centre National de Recherches

Météorologiques (CNRM) model had 40% more vari-

ance than any other model, but otherwise the remaining

control runs revealed no clear outlier models in terms of

variance (i.e., the 95% confidence interval for each model

overlapped with at least one other model). Given the

underestimation of the confidence interval, and the mul-

tiple comparisons involved, we decided not to exclude the

CNRM model from our final set of models. This pro-

cedure eliminated 3 out of 17 models, giving a total mul-

timodel ensemble of 14 models, each of length 300 yr.

It turns out that the IAP model and GISS-EH and

GISS-ER also have significant trends in the control runs.

APT analysis is sensitive to such trends and including

these models in the analysis produced results that were

dominated by these models. Thus, these models are

‘‘outliers,’’ not only in terms of variance, but also in their

multidecadal variability.

c. IMP

We employ a novel procedure for identifying char-

acteristic patterns of internal multidecadal variability.

Complete details can be found in DelSole and Tippett

(2009a,b). Briefly, the method is to optimize APT, which

is defined as the integral over lead time of the ‘‘signal to

total’’ ratio of a forecast model, where signal is the

variance of the ensemble mean at fixed lead time, and

total is the corresponding total variance of the forecast

ensembles. For a multivariate, stationary, Gaussian,

Markov process, maximizing APT leads to the gener-

alized eigenvalue problem

2�
‘

t51
S

t
S�1

0 ST
t

 !
q 5 lS

0
q, (A1)

where q is the desired projection vector, St is the time-

lagged covariance matrix of the process, t is the time lag,

and superscript ‘‘T’’ denotes the transpose matrix. The

eigenvectors provide the basis for decomposing the

multivariate time series into a complete, uncorrelated

set of components ordered such that the first maximizes

APT, the second maximizes APT subject to being un-

correlated with the first, and so on.

In practice, the data are first projected onto the leading

principal components of the control runs [the inverse

projection is somewhat subtle and discussed in Schneider

and Held (2001) and DelSole and Tippett (2007)]. The

results are virtually independent of the number of PCs in

the range 10–100 PCs, presumably because the time series

are relatively long. We choose 40 EOFs for displaying

results, which is less than 1% the number of samples.

The time-lagged covariances become less certain as

the time lag increases, since the amount of data available

for averaging decreases with time lag. To produce more

stable estimates, sample covariances of different con-

trol runs were averaged together. In addition, following

DelSole and Tippett (2009a), we truncate the sum in (A1)

to 20 yr and apply a Parzen window to the time-lagged
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covariances. The results are not sensitive to the truncation

level as long as it is a small fraction of the total length of

4200.

To quantify time scale, we use the sample estimate of

the integral time scale (1)

T̂
2

5 1 1 2 �
20

t51
w

t
r̂2

t , (A2)

where r̂
t

is the sample autocorrelation function of the

time series, t is time lag (in years), and wt are co-

efficients for the Parzen window. The sample integral

time scale of the first 15 components in each control run

is shown in Fig. A1. The T2 value of the leading com-

ponent in each forced run is tabulated in Table 2. For

observation-based estimates, only results after 1900 are

used—uncertainties prior to 1900 are deemed too large

to allow useful estimates (though the results are not very

different if data prior to 1900 are used).

The horizontal line near the bottom of Fig. 11 shows

the 5% significance level, which was estimated by Monte

Carlo methods as follows. An appropriate null hypoth-

esis for our test is that the data are drawn from a white

noise process when sampled every 2 yr. It would be in-

appropriate to assume white noise for annual sampling

because the ocean surface is highly correlated on monthly

time scales, and this correlation translates into a corre-

lation between annual averages. Consistent with this,

assuming white noise for annual sampling leads to all

components being statistically significant—that is, all

components are distinguishable from white noise. Because

APT is invariant to nonsingular linear transformation, the

process can be assumed to be white in space without loss

of generality. Accordingly, we generate a 40 3 2100 data

matrix by drawing independent random numbers from

a normal distribution with zero mean and unit vari-

ance. Components that maximize APT were then de-

termined. For each component, a corresponding 2100-yr

time series was derived. The integral time scale in each

150-yr chunk was determined for each component,

yielding 14 T2 values per component. This procedure was

repeated 100 times to generate 14 3 40 3 100 T2 values.

The upper five percentile of the 14 3 100 T2 values of

each of the 40 components was then determined. The

leading 15 values are plotted in Fig. 11 as the horizontal

line. Note that the T2 threshold values were doubled since

the time step in the Monte Carlo method was 2 yr. Values

below this line can be interpreted as statistically in-

distinguishable from white noise (when sampled every

2 yr). The figure shows that the first six components have

statistically significant time scales. The leading compo-

nent, called the IMP, has statistically significant T2 values

in all control runs.

d. Forced-to-unforced discriminants

The expected pattern of response to climate forcing is

determined by discriminant analysis. This method as-

sumes that the variability in the forced run can be

modeled as internal noise plus an independently varying

signal (i.e., the response to climate forcing). Under this

assumption, the variance due to external forcing and

internal variability are additive and hence the variance

in the forced runs should be larger than in the unforced

runs. Therefore, we seek the pattern that maximizes the

ratio of the variance in the forced runs to the variance in

the unforced runs. This optimization problem is stan-

dard (Schneider and Held 2001; DelSole and Tippett

2007) and leads to the eigenvector problem

S
f
q 5 lS

c
q, (A3)

where Sf and Sc are covariance matrices for the forced

and control runs, respectively, averaged over all models,

q is the desired projection vector, and l is an eigenvalue

giving the variance ratio. The covariance matrices de-

scribe spatial covariability only—no time lag informa-

tion is used in the covariance matrices. The variance in

each control run is measured with respect to the 300-yr

mean of the control run, while variance in the forced run

is measured with respect to the 1901–50 mean of the

respective forced run. Eigenvectors are ordered by de-

creasing eigenvalue, in which case the first maximizes

the variance ratio, the second maximizes the variance

ratio subject to being uncorrelated with the first, and so

on. As in APT analysis, the data are projected onto the

FIG. A1. The T2 time scales of components that maximize the

average predictability time of the 14 control runs. Integral time

scale of selected models is displayed by different symbols as in-

dicated in the legend. Solid horizontal line is the 5% significance

level of the integral time scale.
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leading 40 EOFs of the multimodel ensemble. The lead-

ing eigenvector will be called the ‘‘forced-to-unforced

discriminant.’’

e. Separating forced and unforced components
in observations

To separate the forced and unforced components in

observations, we represent the observed annual mean

temperature anomalies T(x, y, t) as a combination of

three components: the IMP pattern pI(x, y), a forced

pattern pF(x, y), and noise �:

T(x, y, t) 5 p
I
(x, y)b

I
(t) 1 p

F
(x, y)b

F
(t) 1 �(x, y, t),

(A4)

where bI and bF are time-varying amplitudes for the

IMP and forced components, respectively, and � is

a random term that varies in space and time. The am-

plitudes bI and bF are determined using generalized

least squares, which extend ordinary least squares to the

case of dependent noise. This procedure is now recog-

nized to be equivalent to fingerprinting (Allen and Tett

1999). To do this, we rewrite (A4) in matrix form as

T
t
5 P

t
b

t
1 e

t
, (A5)

where Tt is an M-dimensional vector giving the observed

temperature anomaly at time t; Pt is an M 3 2 matrix,

whose two columns are the patterns pI and pF; and

the other terms are interpreted in an obvious manner.

Although the patterns pI and pF do not change in time,

their representation on the observation grid after missing

values are masked out does change. If e has a covariance

matrix of s�
2S�, then the generalized least squares esti-

mate of bt is

b̂
t
5 PT

t S�1
� P

t

� ��1

PT
t S�1

� T
t
, (A6)

where the hat symbol denotes an estimated quantity.

The estimated standard error of the ith element of bt,

denoted bse(b)i, is

bse(b)
i
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2
� (PT

t S�1
� P

t
)�1

� �
ii

r
, (A7)

where ŝ2
� is a sample estimate of s�

2 given by

ŝ2
� 5

1

M � 2
(T

t
� P

t
b̂

t
)TS�1

� (T
t
� P

t
b̂

t
). (A8)

The noise covariance matrix S
�

is estimated by the av-

erage sample covariance matrix of the individual control

runs. Although S� does not change with time, the pattern

of observations with nonmissing values depends on time,

and hence the covariance matrix formed by extracting

the matrix elements corresponding to the observed grid

points depends on time. The condition number of the

noise covariance matrix was found to depend signifi-

cantly on the observation network, with large condition

numbers occurring in the pre-1900 era. To avoid un-

stable estimates, the inverse covariance matrix was

approximated using only the leading 20 eigenvectors of

the noise covariance matrix in each year. A technical

point is that all fields need to be area weighted before

computing the eigenvectors, to ensure that the pseu-

doinverse is taken with respect to an area-weighted

norm.

The amplitudes of the forced and IMP components for

10–40 EOFs are shown in Fig. A2. As can be seen, the

amplitudes are nearly independent of EOF truncation

for years after 1900. The results are more sensitive for six

FIG. A2. Amplitudes of the (top) forced component and (bottom)

IMP in the HadSST2 dataset using 10–40 leading EOFs. Result of

each EOF truncation is shown as a separate curve.

1 FEBRUARY 2011 D E L S O L E E T A L . 923



or fewer EOFs. The greater uncertainty in the pre-1900

period is presumably due to greater missing data that

occurs during this period.

f. Missing observations

The standard error estimate in (A7) does not depend

on missing data and hence does not account for un-

certainty due to missing data. To estimate this uncer-

tainty, we adopt the following resampling procedure.

First, a period with reasonably complete observations

was identified. We found that the 25-yr period 1981–

2005 had no more than 20 missing values in any single

year out of the 688 grid cells used in the calculations.

This period is accordingly identified as the ‘‘data-rich

period.’’ Then, for each year, the amplitudes of the pat-

terns were computed for a year in the data-rich period

for two different networks, namely, the network of ob-

servations in the data-rich period and the network of

observations in the year in question. The difference

between these two estimates gives an estimate of the

uncertainty due to the missing data. Repeating this for

all 25 yr in the data-rich period gives 25 error estimates

from which the variance can be estimated. This variance

is then added to the variance of the regression estimate

[i.e., added to the square of Eq. (A7)] to obtain an es-

timate of the total uncertainty variance due to both finite

sample size and missing observations.

The above approach to dealing with missing obser-

vations is not claimed to be optimal. Other methods,

such as the regularized imputation method proposed

by Schneider (2001), may produce more accurate es-

timates by exploiting space–time correlations in the

data.

g. The ensemble mean IMP and its time scale

The ensemble mean IMP shown in Fig. 6 is calculated

as the average IMP of 36 forced runs from the leading 14

models listed in Table 2. The error bars are computed as

6s/
ffiffiffiffiffi
36
p

, where s is the standard deviation of the IMP in

the forced runs at each year.

To estimate the time scale of the ensemble mean IMP,

we fit the ensemble mean IMP from the forced runs to

the first-order autoregressive model:

x
t
5 fx

t�1
1 k 1 �

t
, (A9)

where xt is the ensemble mean IMP, �t is independent

random error with zero mean and constant variance, and

k is a constant. Standard regression techniques give the

estimates f 5 0.87 and k 5 20.07. Following Leith

(1973), the effective time scale is computed as

T 5 �
‘

t50
r(t) 5 �

‘

t50
ft 5 1/(1� f), (A10)

where r(t) 5 ft is the autocorrelation function of the

process. Substituting f 5 0.87 gives the effective time

scale T ’ 7.7 yr.

h. Distribution of trends for a stochastic process

The trend of a stationary process zt for t 2 [0, T ] is

obtained by fitting the equation

z
t
5 b(t � t

0
) 1 �

t
, (A11)

where

t
0

5
1

T 1 1
�
T

t50
t. (A12)

The least squares estimate of the trend parameter b is

b̂ 5

�
T

t50
z

t
(t � t

0
)

�
T

t50
(t � t

0
)2

. (A13)

Since the sum of t 2 t0 over t 2 [0, T] vanishes, the mean

of b̂ vanishes. The variance of b̂ is

var(b̂) 5

�
T

t50
�
T

t950
(t � t

0
)E(z

t
z

t9
)
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where
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The first term in parentheses in (A16) is the variance of

the T-yr trend for a white noise process with variance

sz. The second term in parentheses is an ‘‘inflation

factor,’’ which accounts for autocorrelation in the time

series.

To estimate the variance of trends for the IMP, we fit

the IMP to an autoregressive model and use the result-

ing model to estimate the autocorrelation rt. The auto-

correlation function for the best-fit AR1 and AR2 models

turns out to be virtually indistinguishable. The best-fit

AR1 model of the form (A9), where xt is substituted

for the IMP, over the period 1900–2008 is found to be

f 5 0.806. The best-fit AR1 models for 1900–45 and

1946–2008 give statistically indistinguishable results.

The standard deviation of the spatially averaged IMP

is sIMP 5 0.0872, which was substituted into (A16).

The 95% confidence interval for the trend is then

61.96
ffiffiffiffiffiffiffiffiffiffiffiffiffi
var[b̂]

q
, which is plotted in Fig. 8 as a function

of trend period T.
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